Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. microbiol ; 49(4): 749-756, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-974295

ABSTRACT

ABSTRACT Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08 mg mL-1) after 48 h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology.


Subject(s)
Polycyclic Aromatic Hydrocarbons/metabolism , Seawater/microbiology , Basidiomycota/metabolism , Phylogeny , Polycyclic Aromatic Hydrocarbons/chemistry , Pyrenes/metabolism , Pyrenes/chemistry , Basidiomycota/isolation & purification , Basidiomycota/classification , Basidiomycota/genetics , Benzo(a)pyrene/metabolism , Benzo(a)pyrene/chemistry , Biodegradation, Environmental , Fungal Proteins/genetics , Fungal Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
2.
Clinics ; 73(supl.1): e482s, 2018. graf
Article in English | LILACS | ID: biblio-952842

ABSTRACT

This review will discuss the contributions of marine natural molecules, a source only recently found to have pharmaceutical prospects, to the development of anticancer drugs. Of the seven clinically utilized compounds with a marine origin, four are used for the treatment of cancer. The development of these drugs has afforded valuable knowledge and crucial insights to meet the most common challenges in this endeavor, such as toxicity and supply. In this context, the development of these compounds will be discussed herein to illustrate, with successful examples provided by cytarabine, trabectedin, eribulin and brentuximab vedotin, the steps involved in this process as well as the scientific advances and technological innovation potential associated with developing a new drug from marine resources.


Subject(s)
Biotechnology/methods , Aquatic Organisms/chemistry , Drug Development/methods , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Oceans and Seas , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Cytarabine/chemistry , Drug Discovery , Trabectedin/chemistry , Furans/chemistry , Brentuximab Vedotin , Ketones/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
3.
Electron. j. biotechnol ; 19(3): 26-35, May 2016. ilus
Article in English | LILACS | ID: lil-787012

ABSTRACT

In the marine environment, all hard surfaces including marine macroorganims are colonized by microorganisms mainly from the surrounding environment. The microorganisms associated with marine macroorganisms offer tremendous potential for exploitation of bioactive metabolites. Biofouling is a continuous problem in marine sectors which needs huge economy for control and cleaning processes. Biotechnological way for searching natural product antifouling compounds gained momentum in recent years because of the environmental pollution associated with the use of toxic chemicals to control biofouling. While, natural product based antifoulants from marine organisms particularly sponges and corals attained significance due to their activities in field assays, collection of larger amount of organisms from the sea is not a viable one. The microorganisms associated with sponges, corals, ascidians, seaweeds and seagrasses showed strong antimicrobial and also antifouling activities. This review highlights the advances in natural product antifoulants research from microbes associated with marine organisms.


Subject(s)
Bacteria , Biological Products/chemistry , Biofouling/prevention & control , Aquatic Organisms , Biotechnology , Marine Biology
4.
China Biotechnology ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-685037

ABSTRACT

The status of marine bioresources and the marine eco-environment issues were summarized and discussed, and the strategies for the development of Chinese marine bioresources in the future were proposed. The degradation of marine eco-environment and unreasonable exploitation of the resources resulted in acute decline of Chinese marine bioresources. The feasible stratagies for the sustainable use of marine bioresources should be to intensify the basic research on marine bioresources science, to strengthen the protection of the marine environment and conservation of marine living resources, and to exploit and utilize marine bioresources scientifically and reasonably by using high-technology including marine biotechnology.

SELECTION OF CITATIONS
SEARCH DETAIL